Athermalization of a lens system by glass selection using simulated annealing with memory augmentation

Author:

Jiang Cheng1,Liu Muqing

Affiliation:

1. Fudan University

Abstract

In contrast to the current athermal map's lack of intuitiveness, we introduce a novel composite athermal map to visually evaluate the potential of lens system glass materials in achieving athermal and achromatic designs. Furthermore, unlike graphically manual methods for athermalization, we propose an automatic method to athermalize the optical system by glass selection using simulated annealing with memory augmentation (GlaSAM). This method employs a comprehensive objective function that integrates thermal aberration, chromatic aberration, secondary spectrum aberration, and Petzval curvature aberration. Weight factors are introduced to evaluate each aberration in the function, and filters are applied to streamline the search space. Additionally, the augmentation of memory into the optimization algorithm not only enhances its efficiency but also safeguards against overlooking solutions with superior imaging quality. To test the advantage of the GlaSAM method, a complex telephoto design is optimized to function across a temperature range from -40°C to 70°C, and the results demonstrate the efficacy of athermalizing the lens system while preserving exceptional imaging performance through this proposed method.

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3