Targeted photothrombotic subcortical small vessel occlusion using in vivo real-time fiber bundle endomicroscopy in mice

Author:

Kim Min-kyung,Choi Wonseok1,Moon Hyuk-June,Han Sungmin,Shin Hyun-joon2ORCID

Affiliation:

1. Yonsei University

2. Korea University of Science and Technology (UST)

Abstract

The development of an accurate subcortical small vessel occlusion model for pathophysiological studies of subcortical ischemic stroke is still insignificant. In this study, in vivo real-time fiber bundle endomicroscopy (FBEµ) was applied to develop subcortical photothrombotic small vessel occlusion model in mice with minimal invasiveness. Our FBFµ system made it possible to precisely target specific blood vessels in deep brain and simultaneously observe the clot formation and blood flow blockage inside the target blood vessel during photochemical reactions. A fiber bundle probe was directly inserted into the anterior pretectal nucleus of the thalamus in brain of live mice to induce a targeted occlusion in small vessels. Then, targeted photothrombosis was performed using a patterned laser, observing the process through the dual-color fluorescence imaging. On day one post occlusion, infarct lesions are measured using TTC staining and post hoc histology. The results show that FBEµ applied to targeted photothrombosis can successfully generate a subcortical small vessel occlusion model for lacunar stroke.

Funder

Korean National Police Agency

Ministry of Trade, Industry and Energy

Korea Institute of Science and Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3