Approach for estimating the vertical distribution of the diffuse attenuation coefficient in the South China Sea

Author:

Zhang Xianqing1,Li Cai,Zheng Yuanning1,Liu Cong1ORCID,Zhou Wen,Xu Zhantang,Yang Zeming,Yang Yuezhong,Cao Wenxi

Affiliation:

1. University of Chinese Academy of Sciences

Abstract

The vertical distribution of the diffuse attenuation coefficient K(z, λ) is critical for studies in bio-optics, ocean color remote sensing, underwater photovoltaic power, etc. It is a key apparent optical property (AOP) and is sensitive to the volume scattering function β(ψ, z, λ). Here, using three machine learning algorithms (MLAs) (categorical boosting (CatBoost), light gradient boosting machine (LightGBM), and random forest (RF)), we developed a new approach for estimating the vertical distribution of K d (z, 650), K Lu (z, 650), and K u (z, 650) and applied it to the South China Sea (SCS). In this approach, based on in situ β(ψ, z, 650), the absorption coefficient a(z, 650), the profile depths z, and K d (z, 650), K Lu (z, 650), and K u (z, 650) calculated by Hydrolight 6.0 (HL6.0), three machine learning models (MLMs) without or with boundary conditions for estimating K d (z, 650), K Lu (z, 650), and K u (z, 650) were established, evaluated, compared, and applied. It was found that (1) CatBoost models have superior performance with R 2 ≥ 0.92, RMSE≤ 0.021 m−1, and MAPE≤ 4.3% and most significantly agree with HL6.0 simulations; (2) there is a more satisfactory consistency between HL6.0 simulations and MLMs estimations while incorporating the boundary conditions; (3) the estimations of K d (z, 650), K Lu (z, 650), and K u (z, 650) derived from CatBoost models with and without boundary conditions have a good agreement with R 2 ≥0.992, RMSE ≤0.007 m−1, and MAPE≤0.8%, respectively; (4) there is an overall decreasing trend with increasing depth and increasing offshore distance of K d (z, 650), K Lu (z, 650), and K u (z, 650) in the SCS. The MLMs for estimating K(z, λ) could provide more accurate information for the study of underwater light field distribution, water quality assessment and the validation of remote sensing data products.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangzhou Nansha District Guangzhou City China

Science Technology Fundamental Resources Investigation Program

Scientific and Technological Planning Project of Guangzhou City

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3