Affiliation:
1. Guangdong University of Technology
2. Beijing University of Posts and Telecommunications
Abstract
Tunable microwave dispersion is highly desired for a wide field of microwave signal processing. However, a conventional microwave dispersive delay line usually suffers from either a small dispersion value or a narrow operation bandwidth. Here, we experimentally demonstrate the optically magnified dispersion of a microwave signal with a wide and flexible tunable range, based on a bandwidth-scaling microwave photonic system. The obtained microwave dispersion can therefore be magnified from the corresponding optical dispersion with a magnification factor that can be continuously tuned from 10,000 to 85,000. Meanwhile, a proof-of-concept experiment that includes both compression and stretching of chirped microwave pulses is reported. Microwave dispersion from 1.34 ns/GHz to 10.92 ns/GHz can be secured by the corresponding magnification of an optical dispersion value of 16 ps/nm.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Guangdong Introducing Innovative and Entrepreneurial Teams of “The Pearl River Talent Recruitment Program”
Research and Development Plan in Key Areas of Guangdong Province
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献