High-throughput sorting of nanoparticles with light-patterned dielectrophoresis force

Author:

Qiu Yuheng,Wei Shan,Li Jiachang,Zhang Zihao,Gong Lei,He Liqun

Abstract

We present a size-based sorting method for nanoparticles in microfluidics with the aid of light-patterned dielectrophoresis (DEP) force. In a microfluidic channel, we have succeeded in manipulating a random distribution of particles into a single stream with the DEP force as well as the hydrodynamic force, and more strikingly, the trajectory of particles is found to be size-dependent, implicating that we can precisely separate nanoparticles based on their sizes even if they are identical in mass. We have numerically predicted the behavior of sorting nanoparticles, emphasizing on the size, velocity and electrical permittivity, so as to know their influences on the effective sorting, particularly in terms of high throughput. Our work confirms that what we believe to be the novel manipulation of nanoparticles features its flexibility as well as high throughput.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

L.G. acknowledges financial support from USTC Research Funds of the Double First-Class Initiative

University of Science and Technology of China Center for Micro- and Nanoscale Research and Fabrication

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3