Hybrid diffractive optics design via hardware-in-the-loop methodology for achromatic extended-depth-of-field imaging

Author:

Pinilla SamuelORCID,Miri Rostami Seyyed Reza1ORCID,Shevkunov Igor1ORCID,Katkovnik Vladimir1ORCID,Egiazarian Karen1

Affiliation:

1. Tampere University

Abstract

End-to-end optimization of diffractive optical elements (DOEs) profile through a digital differentiable model combined with computational imaging have gained an increasing attention in emerging applications due to the compactness of resultant physical setups. Despite recent works have shown the potential of this methodology to design optics, its performance in physical setups is still limited and affected by manufacturing artefacts of DOE, mismatch between simulated and resultant experimental point spread functions, and calibration errors. Additionally, the computational burden of the digital differentiable model to effectively design the DOE is increasing, thus limiting the size of the DOE that can be designed. To overcome the above mentioned limitations, a co-design of hybrid optics and image reconstruction algorithm is produced following the end-to-end hardware-in-the-loop strategy, using for optimization a convolutional neural network equipped with quantitative and qualitative loss functions. The optics of the imaging system consists on the phase-only spatial light modulator (SLM) as DOE and refractive lens. SLM phase-pattern is optimized by applying the Hardware-in-the-loop technique, which helps to eliminate the mismatch between numerical modelling and physical reality of image formation as light propagation is not numerically modelled but is physically done. Comparison with compound multi-lens optics of a last generation smartphone and a mirrorless commercial cameras show that the proposed system is advanced in all-in-focus sharp imaging for a depth range 0.4-1.9 m.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Curriculum learning for ab initio deep learned refractive optics;Nature Communications;2024-08-03

2. Revealing the preference for correcting separated aberrations in joint optic-image design;Optics and Lasers in Engineering;2024-07

3. Hybrid meta/refractive lens design with an inverse design using physical optics;Applied Optics;2024-05-13

4. Green Manufacturing of Electrically-Tunable Smart Light-Weight Planar Optics: A Review;International Journal of Precision Engineering and Manufacturing-Green Technology;2024-05

5. Global Convergence of Alternating Direction Method of Multipliers for Invex Objective Losses;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3