High-resolution optical coherence tomography using gapped spectrum and real-valued iterative adaptive approach

Author:

Bai YuleiORCID,Cai Shuying,Xie Shengli,Dong BoORCID

Abstract

Optical coherence tomography (OCT) is a powerful imaging technique that is capable of imaging cross-sectional structures with micrometer resolution. After combining with phase-sensitive detection, it can sense small changes in the physical quantities inside an object. In OCT, axial resolution is generally improved by expanding the bandwidth of the light source. However, when the bandwidth is expanded discontinuously, the wavelength gap induces abnormal sidelobes when estimating OCT signals in the depth domain. This problem can lead to poor axial resolution. Herein, we present a method based on a real-valued iterative adaptive approach (RIAA) to achieve a high axial resolution under a discontinuous bandwidth condition. The method uses a weighted matrix to suppress the abnormal sidelobes caused by the wavelength gap and, therefore, can realize high-resolution measurements. A single-reflector OCT spectrum was first measured for validation, and its amplitude in the depth domain was estimated using different methods. The results indicate that the RIAA had the best capability of suppressing abnormal sidelobes, thereby achieving a high axial resolution. In addition, cross-sectional images and phase-difference maps of three different samples were measured. A comparison of the results validated the practical value of this method.

Funder

Science and Technology Program of Guangzhou

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3