Abstract
To eliminate the time shift of code edges on a single-sideband (SSB) modulation signal transmission in a radio-over-fiber (RoF) system, a new, to the best of our knowledge, SSB modulation scheme based on an optimal transmission point for a double-parallel Mach–Zehnder modulator (DP-MZM) is proposed. The scheme is based on DP-MZM to realize the separation of the carrier and the +1st-order sideband at the optimal transmission point, and the baseband signal modulates the 2.5 Gb/s data signal to the +1st-order sideband of the SSB signal; then, the carrier and the +1st-order sideband are transmitted with a carrier-to-sideband ratio of 0 dB. Theoretical analysis shows that compared to the traditional SSB-modulated optical millimeter-wave signal generation scheme this scheme completely solves the problem of the time shift of code edges caused by dispersion. The simulation results show that the improved SSB modulation scheme has a Q factor of 23.362, the minimum bit error rate is 4.207×10−127 at 73.453 km, and the eye diagram is still very clear. Under the premise of meeting the basic requirements of communications, the maximum communications distance can reach 135 km, which is 270% of the transmission distance of a traditional SSB modulation model. Thus, the system performance has been greatly improved.
Funder
Aviation Industry Corporation of China
111 Project
Shaanxi Key Science and Technology Innovation Team Project
National Key Research and Development Program of China
National Major in High Resolution Earth Observation
Research Plan Project of National University of Defense Technology
National Natural Science Foundation of China
Open Foundation of Laboratory of Pinghu
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering