Ground flat-field calibration of a space astronomical telescope using a spatial time-sharing calibration method

Author:

Zheng Jianing12ORCID,He Xu1,Zhang Ning1,Xian Jingtian12,Zhang Xiaohui1ORCID

Affiliation:

1. Chinese Academy of Sciences

2. Graduate University of the Chinese Academy of Sciences

Abstract

Preflight ground flat-field calibration is significant to the development phase of space astronomical telescopes. The uniformity of the flat-field illumination reference source seriously decreases with the increasing aperture and the telescope’s field of view, directly affecting the final calibration accuracy. To overcome this problem, a flat-field calibration method that can complete calibration without a traditional flat-field illumination reference source is proposed on the basis of the spatial time-sharing calibration principle. First, the characteristics of the flat field in the spatial domain taken by the space astronomical telescope are analyzed, and the flat field is divided into large-scale flat (L-flat) and pixel-to-pixel flat (P-flat). They are then obtained via different calibration experiments and finally combined with the data fusion process. L-flat is obtained through star field observations and the corresponding L-flat extraction algorithm, which can obtain the best estimation of L-flat based on numerous photometry samples, thereby effectively improving calibration accuracy. The simulation model of flat-field calibration used for accuracy analysis is established. In particular, the error sources or experimental parameters that affect the accuracy of L-flat calibration are discussed in detail. Results of the accuracy analysis show that the combined uncertainty of the proposed calibration method can reach 0.78%. Meanwhile, experiments on an optic system with a Φ142mm aperture are performed to verify the calibration method. Results demonstrate that the RMS values of the residual map are 0.720%, 0.565%, and 0.558% at the large-, middle-, and small-scale, respectively. The combined calibration uncertainty is 0.88%, which is generally consistent with the results of the accuracy analysis.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3