Diagnosis of ultrafast surface dynamics of thin foil targets irradiated by intense laser pulses

Author:

Bae L. J.1,Kang G. B.2,Kim M.3,Lee G. S.2,Sohn J. H.2,Nam C. H.2ORCID,Cho B. I.2ORCID

Affiliation:

1. Korea Atomic Energy Research Institute (KAERI)

2. Institute for Basic Science (IBS)

3. Korea Research Institute of Standards and Science (KRISS)

Abstract

The temporal modulation of an electron bunch train accelerated from a foil target irradiated by an intense laser pulse is studied by measuring the coherent transition radiation (CTR) from the rear surface of a target. We experimentally obtained CTR spectra from a 1 µm thick foil target irradiated at a maximum intensity of 6.5 × 1019 W/cm2. Spectral redshifts of the emitted radiation corresponding to increases in laser intensity were observed. These measurements were compared with the theoretical calculation of CTR spectra considering ultrafast surface dynamics, such as plasma surface oscillation and relativistically induced transparency. Plasma surface oscillations induce a spectral redshift, while relativistic transparency causes a spectral blueshift. Both effects are required to find reasonable agreement with the experiment over the entire range of laser intensities.

Funder

Institute for Basic Science

Ministry of Science and ICT, South Korea

National Research Foundation of Korea

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3