Affiliation:
1. Taiyuan University of Science and Technology
2. Umeå University
Abstract
As an ultra-sensitive detection technique, the noise-immune cavity enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) technique has great potential for assessment of the concentration of trace gases. To determine gas concentrations at the ppt or lower level with high accuracy, it is desirable that the technique exhibits self-calibration (or calibration-free) capabilities. Although being sensitive, NICE-OHMS has so far not demonstrated any such ability. To remedy this, this paper provides a self-calibrated realization of NICE-OHMS that is based on a switching of the feedback target of the DeVoe-Brewer (DVB) locking procedure from the modulation frequency of the frequency modulation spectroscopy (FMS) to the cavity length, which creates an asymmetrical signal whose form and size can be used to unambiguously assess the gas concentration. A comprehensive theoretical model for self-calibrated NICE-OHMS is established by analyzing the shift of cavity modes caused by intracavity absorption, demonstrating that gas absorption information can be encoded in both the laser frequency and the NICE-OHMS signal. To experimentally verify the methodology, we measure a series of dispersion signals under different levels of absorbance using a built experimental setup. An instrument factor and the partial pressure are obtained by fitting the measured signal through theoretical expressions. Our results demonstrate that fitted values are more accurate for higher partial pressures than for lower. To improve on the accuracy at low partial pressures, it is shown that the instrument factor obtained by fitting the signal at large partial pressures (in this case, above 7.8 µTorr) can be set to a fixed value for all fits. By this, the partial pressures can be assessed with a relative error below 0.65%. This technique has the potential to enable calibration-free ultra-sensitive gas detection.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Program for the Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Province
Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献