Magnetic-field-induced splitting of Rydberg Electromagnetically Induced Transparency and Autler-Townes spectra in 87Rb vapor cell

Author:

Li Xinheng,Cui YueORCID,Hao Jianhai,Zhou Fei,Wang Yuxiang,Jia Fengdong,Zhang Jian1,Xie Feng1,Zhong Zhiping

Affiliation:

1. Tsinghua University

Abstract

We theoretically and experimentally investigate the Rydberg electromagnetically induced transparency (EIT) and Autler-Townes (AT) splitting of 87Rb vapor under the combined influence of a magnetic field and a microwave field. In the presence of static magnetic field, the effect of the microwave field leads to the dressing and splitting of each m F state, resulting in multiple spectral peaks in the EIT-AT spectrum. A simplified analytical formula was developed to explain the EIT-AT spectrum in a static magnetic field, and the theoretical calculations agree qualitatively with experimental results. The Rydberg atom microwave electric field sensor performance was enhanced by making use of the splitting interval between the two maximum absolute m F states separated by the static magnetic field, which was attributed to the stronger Clebsch-Gordon coefficients between the extreme m F states and the frequency detuning of the microwave electric field under the static magnetic field. The traceable measurement limit of weak electric field by EIT-AT splitting method was extended by an order of magnitude, which is promising for precise microwave electric field measurement.

Funder

Beijing Municipal Natural Science Foundation

National Natural Science Foundation of China

the Strategic Priority Research Program

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3