Does the chemical contribution have a secondary role in SERS?

Author:

Guerra Hernández Luis A.1ORCID,Reynoso Andrés A.12,Fainstein Alejandro1

Affiliation:

1. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

2. Universidad de Sevilla

Abstract

It is an established understanding that the electromagnetic contribution (plasmon-mediated enhancement of a laser and scattered local electromagnetic fields) is the main actor in surface enhanced Raman scattering (SERS), with the so-called chemical (molecule-related) contribution assuming only, if any, a supporting role. The conclusion of our comprehensive experimental resonant study of a broad range of nanosphere lithography based metallic substrates, with covalently attached 4-mercaptobenzoic acid monolayers used as a probe (standard molecules that are non-resonant in solution), is that this accepted understanding needs to be revised. We present a detailed resonant SERS study of metal-film-over-nanosphere (MFON) substrates that is done by both scanning the laser wavelength and tuning the plasmon response through the nanosphere diameter, which is varied from 500 to 900 nm. Far and local field properties are characterized through measures of optical reflectivity and SERS efficiency, respectively, and are supported by numerical simulations. We demonstrate that SERS intensity depends indeed on the electromagnetic mechanism, determined by the plasmonic response of the system, but we observe that it is also strongly defined by a chemical resonant contribution related to a metal-to-ligand electronic transition of the covalently bound probe molecule. Optimum amplification occurs when the plasmon modes intersect with the ligand-to-metal chemical resonance, contributing synergically both mechanisms together. Quite notably, however, the largest SERS signal is observed when the laser is tuned with the metal-to-ligand transition, and typically does not follow the wavelength dependence of the plasmon modes when varying the nanosphere size. The same general trend is observed for other nanosphere lithography based substrates, including sphere segment void cavities and hexagonally ordered triangular nanoparticles, using either Ag or Au as the plasmonic metal, and also with a commercial substrate (Klarite). Interestingly, this extensive comparative investigation shows in addition that MFON substrates are significantly better than these other studied plasmonic substrates in terms of Raman intensity and homogeneity. We conclude that a deep understanding of both electromagnetic and chemical mechanisms is necessary to fully exploit these substrates for analytical applications.

Funder

Agencia Nacional de Promoción Científica y Tecnológica

European Regional Development Fund

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3