Synchronization of silicon thermal free-carrier oscillators

Author:

Luiz Gustavo de O.12ORCID,Rodrigues Caique C.1ORCID,Alegre Thiago P. Mayer1ORCID,Wiederhecker Gustavo S.1ORCID

Affiliation:

1. Universidade Estadual de Campinas

2. University of Alberta

Abstract

Recent exploration of collective phenomena in oscillator arrays has highlighted the potential to access a range of physical phenomena, from fundamental quantum many-body dynamics to the solution of practical optimization problems using photonic Ising machines. Spontaneous oscillations often arise in these oscillator arrays as an imbalance between gain and loss. Due to coupling between individual arrays, the spontaneous oscillation is constrained and leads to interesting collective behavior, such as synchronized oscillations in optomechanical oscillator arrays, ferromagnetic-like coupling in delay-coupled optical parametric oscillators, and binary phase states in coupled laser arrays. A key aspect of arrays is not only the coupling between the individuals but also their compliance toward neighbor stimuli. One self-sustaining photonic oscillator that can be readily implemented in a scalable foundry-based technology is based on the interaction of free carriers, temperature, and the optical field of a resonant silicon photonic microcavity. Here, we demonstrate that these silicon thermal free-carrier (FC) oscillators are extremely compliant to external excitation and can be synchronized up to their 16th harmonic using a weak seed. Exploring this unprecedented compliance to external stimuli, we also demonstrate robust synchronization between two thermal FC oscillators.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3