Enhanced entanglement via magnon squeezing in a two-cavity magnomechanical system

Author:

Sohail AmjadORCID,Ahmed Rizwan1,Peng Jia-Xin2,Shahzad Aamir,Singh S. K.3

Affiliation:

1. Pakistan Institute of Nuclear Science and Technology (PINSTECH)

2. East China Normal University

3. Sunway University

Abstract

The present study is based on a theoretically feasible scheme for the enhancement of entanglement between different bipartitions due to magnon squeezing in a two-cavity magnomechanical system, having two microwave cavity mode photons, a magnon mode, and phonon mode. The nonlinearity in the system is well enhanced owing to magnon squeezing, which is responsible for the enhancement of different bipartitions’ entanglement. By employing the standard Langevin approach, we found that the magnon squeezing parameter not only enhances the entanglement between directly coupled modes, but also has a considerable impact on indirectly coupled modes’ entanglement. In addition, we find the negative impact of the thermal bath for the mechanical mode on the generation of photon–phonon and magnon–phonon entanglements. Furthermore, magnon squeezing has shown a significant role in the entanglement robustness against thermal effects. Moreover, the tripartite entanglement among photon, magnon, and phonon is also considerably enhanced in the presence of magnon squeezing. This two-cavity magnomechanical system might be used in quantum tasks that require the enhancement of entanglement of indirectly coupled modes.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3