Engineered pseudo and hybrid anapole states in a silicon nanoresonator metasurface

Author:

Pradhan Monica,Sharma Shubhanshi1,Bhaktha B. N. Shivakiran1ORCID,Varshney Shailendra K.1

Affiliation:

1. IIT Kharagpur

Abstract

Significant attention has been devoted to realizing non-radiating states (popularly known as anapole states) in several systems due to the strong localization of electromagnetic fields, which can be attained through destructive interference of various dipole moments, yielding fundamental or higher-order anapole states. Recently, it has been shown that the interference of higher-order excitation also permits light manipulation at the nanoscale and provides additional benefits such as efficient power transfer and enhancement in nonlinearities. In this work, we report discrete electric anapole (pseudo and hybrid) by careful design of an all-dielectric metasurface consisting of a silicon nanodisk such that a higher-order toroidal electric dipole (TD) and quadrupole interfere destructively, producing a hybrid anapole at 815 nm, whereas the pseudo anapole is generated when TD and second-order TD minima occur at the same wavelength of 522 nm. The phase plots confirm the findings of these radiationless states. Such dual and distinct non-radiating current configurations may find applications in spectroscopy, sensing, switching, optical nonlinearity, and optomechanics.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3