Affiliation:
1. Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science
2. University of Science and Technology of China
Abstract
A highly sensitive differential Helmholtz photoacoustic sensor with active noise reduction was reported. Coupled to one cavity of the photoacoustic cell, an intensity-modulated excitation light would reflect multiple times to produce photoacoustic signal, and meanwhile cause the solid-state photoacoustic effect forming differential mode noise with the frequency same as the photoacoustic signal, which could not be suppressed by conventional differential technology. Wavelength modulation technology is a splendid method to restrain this effect, which is not suitable for light sources with not adjustable wavelength. To suppress this kind of noise, an intensity-modulated compensation light was coupled to another cavity, whose central wavelength was at the non-absorption line of the measured gas. The compensation light was of the same frequency, phase, and power as the excitation light, by which the solid-state photoacoustic effects were produced to form destructive interference called active noise reduction. The experiment results showed that the active noise reduction significantly improved the signal-to-noise ratio and signal-to-background ratio. Compared with the differential, the differential with active noise reduction improved signal-to- noise ratio by about 1.2 times and signal-to-background ratio by about 9.4 times. When low-power near-infrared lasers were employed as the two light sources, the minimum detection limits for acetylene and methane reached 21 and 200 ppb, respectively.
Funder
National Natural Science Foundation of China
Scientific Instrument Developing Project of the Chinese Academy of Sciences
Anhui Science Foundation for Distinguished Youth Scholars
Subject
Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献