Delivery of nanosecond laser pulses by multi-mode anti-resonant hollow core fiber at 1 µm wavelength

Author:

Zhao Meng1,Yu Fei2ORCID,Wu Dakun2ORCID,Zhu Xinyue,Chen Si,Wang Meng,Liu Minzhe3ORCID,Zhao Kun3ORCID,Zhai Ruizhan3,Jia Zhongqing3,Knight Jonathan4ORCID

Affiliation:

1. University of Chinese Academy of Sciences

2. Hangzhou Institute for Advanced Study

3. Laser Institute, Qilu University of Technology (Shandong Academy of Sciences)

4. University of Bath

Abstract

In this paper we explore the application of low-loss multimode anti-resonant hollow-core fiber (MM-AR-HCF) in the delivery of nanosecond laser pulses at 1 µm wavelength. MM-AR-HCF with large core offers a rich content of low-loss higher-order modes which plays a key role in the efficient coupling and transmission of high-power laser of low beam quality. In the experiment, laser pulses of an average pulse energy of 21.8 mJ with 14.6 ns pulse width (corresponding a peak power of 1.49 MW) are transmitted through MM-AR-HCF of 9.8 m length without damage. 85% transmission efficiency is achieved where the incident laser beam suffers a low beam quality with M2x and M2y of 2.18 and 1.99 respectively. Laser-induced damage threshold (LIDT) of MM-AR-HCF was measured to be 22.6 mJ for 85% transmission efficiency, which is 7 times higher than that for a multimode silica optical fiber with a large core of 200 µm.

Funder

Shanghai Sailing Program

STI2030-Major Projects

Key Technology Research and Development Program of Shandong Province

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3