Substrate-wave-induced antireflection in metasurfaces

Author:

Ko Y. H.1,Magnusson R.1ORCID

Affiliation:

1. University of Texas at Arlington

Abstract

We address the antireflection (AR) properties of periodic surfaces, or metasurfaces, supporting substrate waves. The work is motivated by recent literature where AR bands formed by substrate-wave propagation are incorrectly attributed to Mie scattering. In contrast, as clearly shown here, substrate-wave generation with corresponding AR signatures is a diffractive effect due to a periodic lattice and is not due to particle scattering as in Mie resonance. Treating both 1D and 2D surfaces, we demonstrate a clear quantitative connection between major AR loci and corresponding total substrate transmittance loci via maps in period versus wavelength. As shown, this holds for fully dispersed, lossy surfaces as well. The results presented here serve to elucidate the physical properties of periodic metasurfaces placed on substrates admitting propagating diffraction orders and may inform the design and implementation of grating-based AR structures.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Substrate Waves on Antireflection Performance of Metasurfaces;2022 IEEE Research and Applications of Photonics in Defense Conference (RAPID);2022-09

2. Multifunctional manipulation of terahertz waves using vanadium-dioxide-based metagratings;Optics Letters;2022-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3