Lateral scanning Raman scattering lidar for accurate measurement of atmospheric temperature and water vapor from ground to height of interest

Author:

Yang Fan,Gao Fei,Zhang Chengan,Li Xiaoli,Gao Xiong,Hua Dengxin,Wang Li,Xin Wenhui,Stanič Samo1

Affiliation:

1. University of Nova Gorica

Abstract

A novel lateral scanning Raman scattering lidar (LSRSL) system is proposed, aiming to realize the accurate measurement of atmospheric temperature and water vapor from the ground to a height of interest and to overcome the effect of a geometrical overlap function of backward Raman scattering lidar. A configuration of the bistatic lidar is employed in the design of the LSRSL system, in which four horizontally aligned telescopes mounted on a steerable frame to construct the lateral receiving system are spatially separated to look at a vertical laser beam at a certain distance. Each telescope, combined with a narrowband interference filter, is utilized to detect the lateral scattering signals of the low- and high-quantum-number transitions of the pure rotational Raman scattering spectra and vibrational Raman scattering spectra of N2 and H2O. The profiling of lidar returns in the LSRSL system is performed by the elevation angle scanning of the lateral receiving system, in which the intensities of the lateral Raman scattering signals at each setting of elevation angles are sampled and analyzed. Preliminary experiments are carried out after the construction of a LSRSL system in Xi’an city, whose retrieval results and statistical error analyses present a good performance in the detection of atmospheric temperature and water vapor from the ground to a height of 1.11 km and show the feasibility for combination with backward Raman scattering lidar in atmospheric measurement.

Funder

National Natural Science Foundation of China

China-CEEC Higher Education Institutions Consortium

Ph.D. innovation fund projects of the Xi’an University of Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3