Affiliation:
1. Beijing Institute of Technology (BIT)
Abstract
In this paper, we present an efficient equalizer based on random forest for channel equalization in optical fiber communication systems. The results are experimentally demonstrated in a 120 Gb/s, 375 km, dual-polarization 64-quadrature magnitude modulation (QAM) optical fiber communication platform. Based on the optimal parameters, we choose a series of deep learning algorithms for comparison. We find that random forest has the same level of equalization performance as deep neural networks as well as lower computational complexity. Moreover, we propose a two-step classification mechanism. We first divide the constellation points into two regions and then use different random forest equalizers to compensate the points in different regions. Based on this strategy, the system complexity and performance can be further reduced and improved. Furthermore, due to the plurality voting mechanism and two-stage classification strategy, the random forest-based equalizer can be applied to actual optical fiber communication systems.
Funder
National Natural Science Foundation of China
the BUPT Excellent Ph.D. Students Foundation
National Key Research and Development Program of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献