Generalized Bloch boundary conditions based on a symmorphic space group and the finite-element implementation in photonic crystal

Author:

Wang Jingwei,Liu Lida,Wang Zhanwen,Jing Yuhao,Chen Yuntian12

Affiliation:

1. Huazhong University of Science and Technology

2. Optics Valley Laboratory

Abstract

We studied generalized Bloch boundary conditions and their finite element implementation within the theoretical framework of a symmorphic space group. By combining translation symmetry operations with mirror and rotational symmetry operations, we developed a procedure for implementing generalized Bloch boundary conditions in the finite element method (FEM) for periodic photonic structures. First, we lay out the theoretical foundation and numerical implementation of generalized Bloch boundary conditions in FEM. We illustrate the proposed method via 2D/3D periodic photonic structures. Without a loss of generality, we calculate the band structures of 2D/3D photonic crystals using our proposed generalized Bloch boundary conditions and benchmark the results against the conventional Bloch boundary conditions. The comparisons show that band structure and eigenmode yield excellent agreement with the results obtained from conventional Bloch boundary conditions. However, our method has improved the computational efficiency by at least twofold. We further elaborate the comparisons with computation errors, memory efficiency, and computation times, all of which show that our proposed method outperforms the conventional one due to careful consideration of the mirror and rotational symmetry operation, apart from the translation symmetry. In addition, our method can easily be extended to other methods such as FDTD and transfer matrix.

Funder

Hubei Province Key Research and Development Program Projects

National Key Research and Development Program of China

National Natural Science Foundation of China

Innovation Project of Optics Valley Laboratory

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3