Surface plasmon resonance temperature sensor based on the conjoined-tube hollow-core anti-resonant fiber with ultra-high temperature sensitivity

Author:

Fu Haihao,Tang Zijuan1,Gao Wei,Guo Yuying,Chu Paul K.2,Lou ShuqinORCID

Affiliation:

1. The Operation bureau of Global Energy Interconnection Development and Cooperation Organization (GEIDCO) and Global Energy Interconnection Group Co. Ltd.

2. Department of Biomedical Engineering, City University of Hong Kong

Abstract

A surface plasmon resonance (SPR) temperature sensor based on the conjoined-tube hollow-core anti-resonant fiber (HC-ARF) is designed and analyzed. The conjoined-tube HC-ARF contains two connecting tubes with a cross arrangement in the cladding. The SPR temperature sensor is constructed by inserting a metal into one of the inner layer tubes and injecting a thermo-sensitive liquid into the hollow core of the HC-ARF to enhance the temperature sensitivity by exploiting the SPR effect. The effects of the structural parameters and thermo-sensitive media and metals on the sensing properties such as the temperature sensitivity, peak loss, resolution, amplitude sensitivity, and figure of merit (FOM) are analyzed systematically. Numerical analysis reveals ultra-high temperature sensitivity of 38.8 nm/°C and FOM of 673.84C−1, which are approximately 10 times higher than those of sensors described in the recent literature. In addition, the sensor is capable of detecting a wide temperature range from −5C to 60°C with good linearity. The SPR temperature sensor with high precision, a wide temperature detection range, a simple and easily modifiable structure, as well as good manufacturing tolerance has large potential in high-precision temperature monitoring in the petrochemical and biomedical industries.

Funder

Beijing Municipal Natural Science Foundation

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3