Affiliation:
1. Beihang University
2. Great Bay University
3. Great Bay Institute for Advanced Study
4. Tulane University
5. The Institute for Solid State Physics, The University of Tokyo
Abstract
The breakdown of a Mott-insulator when subjected to intense laser fields is characterized by the formation of doublon-hole pairs. This breakdown is furthermore evidenced by the production of high harmonics that can be experimentally measured. Here, we present an approach for extracting the doublon-hole correlation length of a Mott insulator. The method is based on a dynamical calculation of the Mott insulator’s rate of charge production in response to an applied strong-field laser pulse. We find that coupling the Mott insulator to a metal drastically increases the correlation length, in support of our recent hypothesis [Phys. Rev. B 108, 144434 (2023)2469-995010.1103/PhysRevB.108.144434] that coupling to a metal enhances the charge fluctuations in the insulator. We confirm our conclusions using density matrix renormalization group (DMRG) calculations. The proposed method can be applied to experimentally measured observables, such as differential reflectivity or the high harmonic generation (HHG) spectrum to extract doublon-hole correlation length.
Funder
Division of Materials Research