Abstract
We consider the quantum electrodynamics of single photons in arrays of one-way waveguides, each containing many atoms. We investigate both chiral and antichiral arrays, in which the group velocities of the waveguides are the same or alternate in sign, respectively. We find that in the continuum limit, the one-photon amplitude obeys a Dirac equation. In the chiral case, the Dirac equation is hyperbolic, while in the antichiral case it is elliptic. This distinction has implications for the nature of photon transport in waveguide arrays. Our results are illustrated by numerical simulations.
Funder
Directorate for Mathematical and Physical Sciences
Air Force Office of Scientific Research
Subject
Atomic and Molecular Physics, and Optics