Affiliation:
1. Chongqing University of Posts and Telecommunications
Abstract
Twisted light carrying orbital angular momentum (OAM), which features a helical phase front, has shown its potential applications in diverse areas, especially in free-space optical (FSO) communications. Multiple orthogonal OAM beams can be utilized to enable high-capacity FSO communication systems. However, for practical OAM-based FSO communication links, atmospheric turbulence will cause serious power fluctuations and inter-model crosstalk between the multiplexed OAM channels, impairing link performance. In this paper, we propose and experimentally demonstrate a novel OAM mode-group multiplexing (OAM-MGM) scheme with transmitter mode diversity to increase system reliability under turbulence. Without adding extra system complexity, an FSO system transmitting two OAM groups with a total of 144 Gbit/s discrete multi-tone (DMT) signal is demonstrated under turbulence strength D/r0 of 1, 2, and 4. In our experiments, the proposed OAM-MGM scheme helps to achieve bit-error-rate (BER) mostly less than 3.8 × 10−3 under turbulence strength D/r0 of 1 and 2 with a total transmitted power of 10 dBm. Compared with the conventional OAM mode multiplexed system, the system interruption probability decreases from 28% to 4% under moderate turbulence strength D/r0 of 2.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Natural Science Foundation of Chongqing
Science and Technology Research Program of Chongqing Municipal Education Commission
Subject
Atomic and Molecular Physics, and Optics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献