Affiliation:
1. Paderborn University
2. Institute for Photonic Quantum Systems (PhoQS), Paderborn University
3. University of Arizona
Abstract
This review examines the use of continuous-variable spectroscopy techniques for investigating quantum coherence and light-matter interactions in semiconductor systems with ultrafast dynamics. Special emphasis is placed on multichannel homodyne detection as a powerful tool to measure the quantum coherence and the full density matrix of a polariton system. Observations, such as coherence times that exceed the nanosecond scale obtained by monitoring the temporal decay of quantum coherence in a polariton condensate, are discussed. Proof-of-concept experiments and numerical simulations that demonstrate the enhanced resourcefulness of the produced system states for modern quantum protocols are assessed. The combination of tailored resource quantifiers and ultrafast spectroscopy techniques that have recently been demonstrated paves the way for future applications of quantum information technologies.
Funder
Deutsche Forschungsgemeinschaft
Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen
Universität Paderborn
Subject
Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献