Atom-based sensing technique of microwave electric and magnetic fields via a single rubidium vapor cell

Author:

Feng Zhigang1,Liu Xiaochi2ORCID,Zhang Yingyun1,Ruan Weimin13,Song Zhenfei1,Qu Jifeng1

Affiliation:

1. National Institute of Metrology

2. Chinese Academy of Sciences

3. China Jiliang University

Abstract

We present an atom-based approach for determining microwave electric and magnetic fields by using a single rubidium vapor cell in a microwave waveguide. For a 87Rb cascade three-level system employed in our experiment, a weak probe laser driving the lower transition, 5S1/2→5P3/2, is first used to measure the microwave magnetic field based on the atomic Rabi resonance. When a counter-propagating strong coupling laser is subsequently turned on to drive the Rydberg transition, 5P3/2→67D5/2, the same probe laser is then used as a Rydberg electromagnetically induced transparency (EIT) probe to measure the microwave electric field by investigating the resonant microwave dressed Autler-Townes splitting (ATS). By tuning the hyperfine transition frequency of the ground state using an experimentally feasible static magnetic field, we first achieved a measurement of the microwave electric and magnetic field strength at the same microwave frequency of 6.916 GHz. Based on the ideal relationship between the electric and magnetic field components, we obtained the equivalent microwave magnetic fields by fitting the inversion to the measured microwave electric fields, which demonstrated that the results were in agreement with the experimental measurement of the microwave magnetic fields in the same microwave power range. This study provides new experimental evidence for quantum-based microwave measurements of electric and magnetic fields by a single sensor in the same system.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3