Affiliation:
1. Ningbo University
2. Key Laboratory of Photoelectric Detecting Materials and Devices of Zhejiang Province
3. Westlake University
4. Westlake Institute for Advanced Study
Abstract
Bragg grating (BG) filters play important roles in integrated photonics such as signal processing and optical sensing. In silicon-based counterpart photonic platforms, the application of narrow-bandwidth (Δλ) filters is often restrained by fabrication limitations. In this study, narrow-bandwidth BG filters based on Ge-Sb-Se chalcogenide materials are investigated. The structure of the filter is designed by optimizing the grating period, corrugation height, and grating number. The large corrugation of chalcogenide BG is more friendly and convenient for manufacturing process. The symmetric and asymmetric corrugation filters are then fabricated and characterized. Experimental results show a half-maximum bandwidth of 0.97 nm and 0.32 nm for symmetric and asymmetric filters, respectively, which demonstrates excellent narrow-bandwidth filtering performance of chalcogenide BG.
Funder
Natural Science Foundation of Zhejiang Province
National Natural Science Foundation of China
K. C. Wong Magna Fund in Ningbo University
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献