Substrip-based registration and automatic montaging of adaptive optics retinal images

Author:

Liu Ruixue1ORCID,Wang Xiaolin1,Hoshi Sujin123,Zhang Yuhua12

Affiliation:

1. Doheny Eye Institute

2. University of California - Los Angeles

3. University of Tsukuba

Abstract

Precise registration and montage are critical for high-resolution adaptive optics retinal image analysis but are challenged by rapid eye movement. We present a substrip-based method to improve image registration and facilitate the automatic montaging of adaptive optics scanning laser ophthalmoscopy (AOSLO). The program first batches the consecutive images into groups based on a translation threshold and selects an image with minimal distortion within each group as the reference. Within each group, the software divides each image into multiple strips and calculates the Normalized Cross-Correlation with the reference frame using two substrips at both ends of the whole strip to estimate the strip translation, producing a registered image. Then, the software aligns the registered images of all groups also using a substrip based registration, thereby generating a montage with cell-for-cell precision in the overlapping areas of adjacent frames. The algorithm was evaluated with AOSLO images acquired in human subjects with normal macular health and patients with age-related macular degeneration (AMD). Images with a motion amplitude of up to 448 pixels in the fast scanner direction over a frame of 512 × 512 pixels can be precisely registered. Automatic montage spanning up to 22.6 degrees on the retina was achieved on a cell-to-cell precision with a low misplacement rate of 0.07% (11/16,501 frames) in normal eyes and 0.51% (149/29,051 frames) in eyes with AMD. Substrip based registration significantly improved AOSLO registration accuracy.

Funder

W. M. Keck Foundation

National Institutes of Health

Carl Marshall and Mildred Almen Reeves Foundation

Prevent Blindness

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3