Reconstruction of the gradient field in the cross-section of an acoustic wave and its usefulness in processing acoustic wave fields

Author:

Xue Bin1ORCID,Wang Dongliang1,Zhen Yifan1,Yu Rongzhao1,Yang Xiaoxia2

Affiliation:

1. Tianjin University

2. Tianjin University of Technology and Education

Abstract

This paper proposes a method of reconstructing the gradient field in a cross-section of the acoustic wave using the laser beam deflection tomography, then verifing that the simultaneous acquisitions of the relative acoustic pressure distribution and the gradient field can make the direct employment of Kirchhoff’s integral theorem feasible. Specifically, a position-sensitive detector (PSD) is used to sense the deflection of a laser beam impinging on a propagating acoustic wave. The deflection of the laser beam can be divided into two parts; one is in the plane that laser beams go through, and the other is perpendicular to the plane. Combining the tomographic results using the two parts of the deflection, the gradient field of the propagating acoustic wave in a cross-section is obtained, which is an extended version of beam deflection tomography. Based on the gradient of a wavefield along with the relative sound pressure distribution, Kirchhoff’s integral theorem can be directly employed to calculate and analyze the wavefield further, which was hardly achieved in the past due to the lack of dense gradient sensing regimes. To verify the usefulness, two experiments are conducted, whose results indicate that the densely and precisely acquired gradient field of an acoustic wave is useful in solving the problem of port and starboard ambiguity, and the problem of accurate near-field prediction can also be well addressed, which in a deeper sense benefit from the direct employment of Kirchhoff’s integral theorem in practical applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 基于激光偏转效应的水下邻域声场重建方法;Laser & Optoelectronics Progress;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3