Abstract
Resonance analysis and structural optimization of multi-channel selective fiber couplers currently rely on numerical simulation and manual trial and error, which is very repetitive and time consuming. To realize fast and accurate resonance analysis and calculation, we start with dual-core structures and establish forward classification and regression neural networks to classify and predict different resonance properties, including resonance types, operating wavelength, coupling coefficient, coupling length, 3 dB bandwidth, and conversion efficiency. The pre-trained forward neural networks for dual-core fibers can also realize accurate and fast prediction for multi-core fibers if the mode energy exchange occurs only between one surrounding core and the central core. For the inverse design, a tandem neural network has been constructed by cascading the pre-trained forward neural network and the inverse network to solve the non-uniqueness problem and provide an approach to search for appropriate and desired multi-core structures. The proposed forward and inverse neural networks are efficient and accurate, which provides great convenience for resonance analysis and structural optimization of multi-channel fiber structures and devices.
Funder
Natural Science Foundation of Tianjin City
National Natural Science Foundation of China
National Key Research and Development Program of China
Tianjin Municipal Education Commission
Opening Foundation of Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. 人工智能赋能激光:现状、机遇与挑战;Chinese Journal of Lasers;2023