Affiliation:
1. Chinese Academy of Sciences
Abstract
Triplet generation by quantum dots (QDs)-sensitized molecules emerges great potential in many applications. However, the mechanism of triplet energy transfer (TET) is still fuzzy especially due to the complicated energy level alignment of QDs and molecules or trap states in QDs. Here, CdSe QDs and 5-tetracene carboxylic acid (TCA) molecules are selected as the triplet donor and acceptor, respectively, to form a TET system. By tuning the band gap of CdSe, the CdSe-TCA complex is exactly designed to present a Type-II like alignment of relative energetics. Coupling the transient absorption and time-resolved fluorescence spectra, all carrier dynamics is distinctly elucidated. Quantitative analysis demonstrates that hole transfer persisting for ∼ 2 ps outcompetes all other carrier dynamics such as electron trapping (∼100 ps level), charge recombination (∼ 5 ns) and the so-called “back transfer charge recombination” (∼50 ns), and thus leads to a hole-transfer-mediated TET process. The low TET yield (∼34.0%) ascribed to electron behavior can be further improved if electron trapping and charge recombination are efficiently suppressed. The observation on distinguishable carrier dynamics attributed to legitimate design of energy level alignment facilitates a better understanding of the TET mechanism from QDs to molecules as well as further development of photoelectronic devices based on such TET systems.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Key Research and Development Plan of Hubei Province
Science and technology research project of Hubei Provincial Department of Education
Teacher Research Ability Cultivation Foundation of Hubei University of Arts and Science
Hubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献