Indefinite metacavities coupled to a mirror: bound states in the continuum with anomalous resonance scaling

Author:

Zhang QiangORCID,Li Peixiang,Gu ZhiyuanORCID,Liu Shaoding,Duan Zejun

Abstract

Indefinite metacavities (IMCs) made of hyperbolic metamaterials show great advantages in terms of extremely small mode volume due to large wave vectors endowed by the unique hyperbolic dispersion. However, quality (Q) factors of IMCs are limited by Ohmic loss of metals and radiative loss of leaked waves. Despite the fact that Ohmic loss of metals is inevitable in IMCs, the radiative loss can be further suppressed by leakage engineering. Here we propose a mirror coupled IMC structure which is able to operate at Fabry–Pérot bound states in the continuum (BICs) while the hyperbolic nature of IMCs is retained. At the BIC point, the radiative loss of magnetic dipolar cavity modes in IMCs is completely absent, resulting in a considerably increased Q factor (>90). Deviating from the BIC point, perfect absorption bands (>0.99) along with a strong near-field intensity enhancement (>1.8×104) appear when the condition of critical coupling is almost fulfilled. The proposed BICs are robust to the geometry and material composition of IMCs and anomalous scaling law of resonance is verified during the tuning of optical responses. We also demonstrate that the Purcell effect of the structure can be significantly improved under BIC and quasi-BIC regimes due to the further enhanced Q factor to mode volume ratio. Our results provide a new train of thought to design ultra-small optical nanocavities that may find many applications benefitting from strong light–matter interactions.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Shanxi Province

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3