Abstract
The relative phase change between two light fields can be used as a fundamental parameter to measure the physical quantity causing this change. Therefore, amplifying the relative phase change becomes attractive to improve the measurement resolution. Phase amplification using a many-body entangled state (NOON state) is a well-known method; nevertheless, the preparation process for a high-number NOON state is difficult and sensitive to optical loss. Here, we propose and experimentally verify a concise phase amplification method with a tolerance of about five orders of magnitude for optical loss. The method is based on the optical-feedback-induced intracavity harmonics generation effect to amplify the phase change by 11 times, which is comparable to the highest level of about 10 experimentally reached in NOON states. Furthermore, the 20th intracavity harmonic is generated when the reinjected photon number increases, indicating that 20 times phase amplification is attainable. The proposed method has a prospect for precision measurement applications.
Funder
Tsinghua Initiative Scientific Research Program
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献