Optimization of diffuse Raman spectroscopy for in-vivo quantification of foreign body response in a small animal model

Author:

Dooley Max,Luckett Jeni1,Alexander Morgan R.1,Matousek Pavel2,Dehghani Hamid3ORCID,Ghaemmaghami Amir M.1,Notingher IoanORCID

Affiliation:

1. University of Nottingham

2. Central Laser Facility

3. University of Birmingham

Abstract

Diffuse Raman spectroscopy (DRS) allows subsurface molecular analysis of optically turbid samples. Numerical modeling of light propagation was used as a method for improving the design of an DRS instrument to maximize the signal to noise ratio (SNR) while ensuring safe laser exposure parameters required for in-vivo measurements. Experimental validation of the model was performed on both phantom samples and disks implanted postmortem to mimic the typical response to foreign bodies (formation of a fibrotic capsule around an implant). A reduction of laser exposure of over 1500-fold was achieved over previous studies whilst maintaining the same Raman collection rates and reaching the safe power density of 3 mW/mm2. The validation of this approach in a subcutaneous implant in a mouse cadaver showed a further improvement of 1.5-fold SNR, with a thickness limit of detection for the fibrotic layer of 23 µm, under the same acquisition times. In the animal body, a thickness limit of detection of 16 µm was achieved. These results demonstrate the feasibility of numerical model-based optimization for DRS, and that the technique can be improved sufficiently to be used for in-vivo measurement of collagenous capsule formation as a result of the foreign body response in murine models.

Funder

National Centre for the Replacement Refinement and Reduction of Animals in Research

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3