Characterization of pixelated nanogratings in 3D holographic display by an imaging Mueller matrix ellipsometry

Author:

Chen Chao1,Chen Xiuguo1ORCID,Xia Zhongwen2,Shi Jiacheng2,Sheng Sheng1,Qiao Wen2ORCID,Liu Shiyuan1ORCID

Affiliation:

1. Huazhong University of Science and Technology

2. Soochow University

Abstract

The diffraction grating, as an element that can control the direction of the emitted light, is the key component used in holographic sampling three-dimensional (3D) displays. The structural accuracy of nanogratings greatly affects the precision of light modulation, thus influencing the cross talk and resolution in 3D displays. It is of great significance for the nondestructive measurement of nanogratings. However, existing measurement methods have certain limitations such as destructiveness and low measurement efficiency in the face of measuring such pixelated nanogratings. In this work, aimed at the measurement requirements and challenges of pixelated nanogratings in 3D displays, we propose to use a self-designed imaging Mueller matrix ellipsometer (IMME) for grating characterization. A sample containing 6 periods and 10 orientations of pixelated gratings is investigated to verify the effectiveness of the method used. Through the measurement and fitting data, the measurement data obtained by using the IMME can be well matched with the theoretical results. At the same time, the extraction results of the structural parameters, periods, and orientations are also consistent with the measurement results from scanning electron microscopy. It is expected that the IMME will provide a guarantee for the accurate display of 3D holography.

Funder

National Natural Science Foundation of China

Key Research and Development Plan of Hubei Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3