Background-free imaging of cold atoms in optical traps

Author:

Li Li1,Liu Yijia1,Zhou Xiaolong1,Huang Dongyu1,Shen Zemin1,He Sijian1,Wang Jian1,Li Chuanfeng1ORCID,Guo Guangcan1

Affiliation:

1. University of Science and Technology of China

Abstract

Optical traps, including those used in atomic physics, cold chemistry, and quantum science, are widely used in the research on cold atoms and molecules. Owing to their microscopic structure and excellent operational capability, optical traps have been proposed for cold atom experiments involving complex physical systems, which generally induce violent background scattering. In this study, using a background-free imaging scheme in cavity quantum electrodynamics systems, a cold atomic ensemble was accurately prepared below a fiber cavity and loaded into an optical trap for transfer into the cavity. By satisfying the demanding requirements for the background-free imaging scheme in optical traps, cold atoms in an optical trap were detected with a high signal-to-noise ratio while maintaining atomic loading. The cold atoms were then transferred into the fiber cavity using an optical trap, and the vacuum Rabi splitting was measured, facilitating relevant research on cavity quantum electrodynamics. This method can be extended to related experiments involving cold atoms and molecules in complex physical systems using optical traps.

Funder

Innovation Program for Quantum Science and Technology

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3