Minimalist design of multifunctional metasurfaces for helicity multiplexed holography and nanoprinting

Author:

Liang Congling,Huang Tian,Li Zile1ORCID,Guan Zhiqiang23,Li Gongfa4,Zhang Shunping23,Zheng Guoxing13ORCID

Affiliation:

1. Peng Cheng Laboratory

2. Wuhan University

3. Wuhan Institute of Quantum Technology

4. Wuhan University of Science and Technology

Abstract

Recently, polarization multiplexing has become a common strategy to enhance the information capacity of metasurfaces. Nevertheless, the intricate design of anisotropic nanostructures forming a polarization multiplexed metasurface poses a significant challenge, increasing the requirements for manufacturing processes and diminishing overall robustness. Herein, we present a minimalist metasurface comprised of only two kinds of nanostructures to achieve the integration of continuous-amplitude modulated nanoprinting and eight-step phase-only helicity-multiplexed holography. Specifically, the nanoprinting image governed by Malus’s law can be observed in the orthogonally polarized light path, while holographic images can be switched by changing the chirality of the incident circularly polarized light. More importantly, the geometric phase and the propagation phase of the metasurface are optimized simultaneously according to the target images. Thus, the metasurface does not require optimizing many kinds of nanostructures to achieve the phase but only needs two kinds of nanostructures, forming a minimalist metasurface that significantly relieves the design and fabrication burden. Moreover, the proposed methodology is universal and applicable not only in polarization multiplexing but also in other multi-channel multiplexing technologies. Consequently, the proposed scheme holds promising applications in image display, information encryption, data storage, anti-counterfeiting, and more.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Open Fund of the Key Laboratory for Metallurgical Equipment and Control Technology of Ministry of Education in Wuhan University of Science and Technology

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3