Affiliation:
1. Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province
2. Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province
Abstract
Chalcogenide glass has become one of the essential IR lens materials in passively athermalized long-wave IR devices. However, that there is no multispectral chalcogenide glass capable of large-size fabrication raises challenges to the development and popularization of multispectral imaging systems combining visible, near-IR, and mid-IR. In this work, we developed a novel chalcogenide glass capable of a record-big (Ø120 mm) fabrication through the compositional optimization of GeS2–Ga2S3–CsCl glass with introduction of Sb2S3. Its transmission window is characterized as ranging from 0.51 to 11.2 µm, which means it could be employed as a multispectral lens transmitting visible and IR signals in a co-aperture IR optical system. In addition, a method of three-stage thermal analysis is proposed to evaluate the glass-forming ability of chalcogenide glass through simulating the melt-quenching process of chalcogenide melt in a vacuum-sealed silica ampoule. This work not only shows an innovative multispectral chalcogenide glass with promising applications but also introduces a simple and convenient technique for screening chalcogenide glass with ultrahigh glass-forming ability capable of large-size fabrication.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Natural Science Foundation of Ningbo
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献