Affiliation:
1. Shenzhen Technology University
Abstract
Upon laser irradiation, 2D materials experience a cascading energy transfer from electrons to optical phonons (OPs) and then to acoustic phonons (APs), resulting in a significant thermal non-equilibrium among energy carriers. This non-equilibrium presents challenges for Raman-based thermal characterization, as Raman scattering measures only OP temperature rise, while APs are the primary energy carriers. Despite recent efforts to address this issue, OP–AP thermal non-equilibrium in supported 2D materials remains poorly resolved. Here, we develop a method to distinguish the OP and AP temperature rises based on their different temporal thermal responses under laser irradiation: the OP–AP temperature difference responds almost immediately (∼a few to tens of ps), while the AP temperature rise takes longer to establish (∼tens of ns). Using energy transport-state resolved Raman, we probe the transient thermal response of Si-supported nm-thick MoS2 from 20 to 100 ns. We find that the OP–AP temperature difference exceeds 120% of the AP temperature rise under ∼0.439 µm radius laser heating. The intrinsic interfacial thermal conductance of the samples, based on the true AP temperature rise, varies from 0.199 to 1.46 MW·m−2·K−1, showing an increasing trend with sample thickness.
Funder
Shenzhen Scientific and Technological Foundation
National Natural Science Foundation of China
Basic and Applied Basic Research Foundation of Guangdong Province
National Science Foundation