Affiliation:
1. Nanjing University of Science & Technology
2. Chongqing University
Abstract
Single-shot measurement of surface defects of mirrors is vital for monitoring the operating states of high power lasers systems. While conventional methods suffer from low speed and small dynamic range. Here, we demonstrate a method for high speed two-dimensional (2D) surface amplitude-type defects measurement based on ultrafast single-pixel imaging assisted by a virtually imaged phased-array. Together with an optical grating, 2D wavelength to space mapping is achieved based on Fraunhofer far field diffraction, and the uniform broad spectrum of a home-made dissipative soliton is uniformly dispersed into the targeted mirror with one-to-one wavelength-to-space mapping. The surface amplitude-type defects are modulated into the intensity variation of the reflected spectrum. Then, we build a dispersive Fourier transform module for wavelength to time mapping, through which modulated spectral information is time stretched into the temporal domain, and recorded by a high speed photodetector together with a real time oscilloscope. Finally, to diminish the distortions induced by nonlinear dispersion during the wavelength-time mapping, we utilize the interpolation, and reconstruct the 2D surface with a frame rate of 7.6 MHz. A two-dimensional image with widths of 1.5 × 2 mm can be obtained within 10 ns, with a y direction spatial resolution of 180 µm and a x direction spatial resolution of 140 µm. This ultrafast 2D surface defects measurement scheme is promising for real-time monitoring of surface defects mirrors with large aperture, which are widely utilized in various high power laser systems.
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献