Optimal thermometry theory of three-channel wide spectrum based on three-directional difference

Author:

Yu Qiansong,Liu Chang,Gu Shengyu,Dong YuanORCID

Abstract

The constant spectral emissivity decoupling method within current wide-spectrum thermometry theories stands as a primary factor contributing to accuracy degradation. This creates a deadlock in the current radiation thermometry framework, where the system’s two-dimensional analytical capabilities and resolution accuracy cannot be concurrently achieved, becoming a major theoretical obstacle in the development of this technique. Consequently, based on the Taylor series de-integration method under the wide spectral framework, and taking the first and second derivative terms of spectral emissivity as the starting point, a wide spectral optimization temperature solution theory based on three-directional difference method is proposed. It ensures compatibility and stable solving conditions for imaging systems, while fundamentally removing the dependency on the constantization of spectral emissivity treatment, and realizing the decoupling and inversion of three-channel spectral emissivity. The handling effects of different cutoff precision differential methods on spectral emissivity derivatives are discussed, and the temperature and spectral emissivity solving capabilities of the method are theoretically validated under various spectral emissivity models. Furthermore, this method is used to monitor the continuous temperature rise processes of two different samples. Maximum average relative temperature calculation errors below 6% and 5% are achieved, and the target spectral emissivity variation rate and trend are well reproduced, yielding conclusions consistent with simulations.

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3