Performance analysis of a liquid lens for laser ablation using OCT imaging

Author:

Zhang ChunqiORCID,Tang Xu,Yang Mingxuan,Zhao Han,Sun Dong1

Affiliation:

1. Shenzhen Research Institute

Abstract

Laser ablation has been used in different surgical procedures to perform precise treatments. Compared with previous free-beam laser delivery systems, flexible-optical-fiber-based systems can deliver laser energy to a curved space, avoiding the requirement of a straight working path to the target. However, the fiber tip maintains direct contact with the tissue to prevent laser divergence, resulting in fiber damage, uneven ablation, and tissue carbonization. Here, a liquid lens is used to address the problem of laser defocusing when radiating targets at different depths for flexible-optical-fiber-based systems. The liquid lens focuses a laser with a maximum power of 3 W onto a medium-density fiberboard at a focal length of 40–180 mm. The relationships between the ablation crater diameter and depth with the radiation time and laser power have been quantitatively evaluated through OCT (optical coherence tomography) imaging. Experiments demonstrate that the liquid lens can continuously focus the high-power laser to different depths, with the advantages of compact size, fast response, light weight, and easy operation. This study explores liquid-lens-based focused laser ablation, which can potentially improve the performance of future medical image-guided laser ablation.

Funder

University Grants Committee

National Natural Science Foundation of China

Science and Technology Foundation of Shenzhen City

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3