Double-ring-disk hybrid nanostructures with slits for electric field enhancement

Author:

Mu Haiwei,Xu Xinchen,Lv Jingwei,Liu Chao,Liu Wei,Yang Lin,Wang Jianxin,Liu Qiang,Lv Yan,Chu Paul K.1

Affiliation:

1. City University of Hong Kong

Abstract

Although noble metal nanoantennas have distinctive optical properties and local electric field enhancement, considerable non-radiative ohmic losses occur at the optical frequencies, consequently creating significant absorption and unwanted heating. Combining the plasmon mode of metal nanoantennas with the anapole mode of high refractive index dielectric materials offers a promising alternative to increase the electric field strength with minimal loss. Herein, a silicon disk with slots and two Au rings with a coupling mechanism are described. To elucidate the field enhancement mechanism, the near-field enhancement features and near-field electric field distributions are explored by a numerical simulation and multipole decomposition analysis. By opening the slit to generate high-intensity hot spots inside the disk, the electric field can be enhanced significantly, and nearby molecules can directly contact these hot spots. The resulting large field enhancement suggests significant applications to strong photon-exciton coupling and nonlinear photonics.

Funder

City University of Hong Kong

China Postdoctoral Science Foundation

Natural Science Foundation of Heilongjiang Province

Outstanding Young and Middle-Aged Research and Innovation Team of Northeast Petroleum University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3