Dynamic near-field and far-field radiation manipulation using a reprogrammable guided-wave-excited metasurface

Author:

Peng ShuangORCID,Yang Fei,Zhang Han,Fu Zhan Yi,Liu Chen Xi,Lu Hai Ying,Xie Ya Ting,Yu Qian,Huang Rui,Fu Xiao JianORCID,Wu Jun Wei

Abstract

The dynamic and integrated control of near- and far-field electromagnetic waves is essential for advancing emerging intelligent information technology. Metasurfaces, distinguished by their low-profile design, cost-effectiveness, and ease of fabrication, have successfully revolutionized various electromagnetic functions. However, current research on the dynamic integrated manipulation of near-field and far-field electromagnetic waves using a single metasurface remains relatively constrained, due to the complexity of element-level control, restricted dynamic tuning range, and tuning speed. Herein, we propose an element-level controlled, versatile, compact, and broadband platform allowing for the real-time electronic reconstruction of desired near/far-field electromagnetic wavefronts. This concept is achieved by precisely regulating the 1-bit amplitude coding pattern across a guided-wave-excited metasurface aperture loaded with PIN diodes, following our binary-amplitude holographic theory and modified Gerchberg–Saxton (G–S) algorithm. Consistent findings across calculations, simulations, and experiments highlight the metasurface’s robust performance in 2D beam scanning, frequency scanning, dynamic focusing lens, dynamic holography display, and 3D multiplexing holography, even under 1-bit control. This simplified and innovative metasurface architecture holds the promise of substantially propelling forthcoming investigations and applications of highly integrated, multifunctional, and intelligent platforms.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3