Ultra-high resolution mass sensing based on an optomechanical nonlinearity

Author:

Li Gang1,Wu Yi1,Zhang Yan Lei2,He Bing3,Lin Qing1ORCID

Affiliation:

1. Huaqiao University

2. University of Science and Technology of China

3. Universidad Mayor

Abstract

Ultra-high resolution mass sensing used to be realized by measuring the changed mechanical oscillation frequency by a small mass that should be detected. In this work we present a different approach of mass sensing without directly measuring such mechanical frequency change but relying on the modified light field due to a previously less explored nonlinear mechanism of optomechanical interaction. The concerned optomechanical setup used for the mass sensing is driven by a sufficiently strong two-tone field satisfying a condition that the difference of these two drive frequencies matches the frequency of the mechanical oscillation, so that a nonlinear effect will come into being and lock the mechanical motion under the radiation pressure into a series of fixed orbits. A small mass attached to the mechanical resonator slightly changes the mechanical frequency, thus violating the exact frequency match condition. Such small change can be detected by the amplitude modification on the higher order sidebands of the cavity field. Even given a moderate mechanical quality factor for the setup, the added mass can still be detected to the levels corresponding to a mechanical frequency shift from 5 to 7 order less than the mechanical damping rate. Because the output cavity field difference for very close values of mechanical frequency is not blurred by thermal noise, such mass sensing can be well performed at room temperature. The previous tough requirements for ultra-high resolution mass sensing can be significantly relaxed by the method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3