QoT-aware tree selection, routing, modulation, and spectrum assignment for filterless EONs over the C + L-band

Author:

Ghasrizadeh Mohammad SadeghORCID,Arpanaei Farhad1ORCID,Beyranvand HamzehORCID

Affiliation:

1. Universidad Carlos III de Madrid

Abstract

Filterless optical networks (FONs) as an economical solution use passive couplers/splitters rather than expensive active filter devices. In this way, after intermediate and destination nodes, lightpaths are dropped and continued, which generates leakage signals in other links and wastes spectrum. Thus, designing efficient resource allocation in FONs by considering the leakage signals and their interfering effects is of utmost importance. On the other hand, a gradual transition from wavelength division multiplexing optical networks to elastic optical networks (EONs) is occurring due to their efficient utilization of spectrum. Furthermore, utilizing the L-band beside the conventional C-band for spectrum assignment offers a wide range of frequency resources. Therefore, in this paper, we propose an integer linear program (ILP) to solve quality of transmission (QoT)-aware tree selection, routing, modulation, and spectrum assignment problems in filterless EONs over the C+L-band. Furthermore, we provide heuristic algorithms to deal with complex large-scale networks. The performance gap of the proposed ILP and heuristic algorithms is evaluated over a small-scale (5-node) network. The results show that the ILP and heuristic algorithms have almost the same performance in terms of spectrum usage and assigned modulation format, and ILP has a slightly higher generalized signal-to-noise-ratio (GSNR) (0.23 dB or 0.8% at optimum launch power). Furthermore, the heuristic algorithms are also examined over a large-scale network (TID region A topology). The results reveal that the GSNR estimation method severely affects the performance in terms of spectrum usage, blocking, and outage. Furthermore, by using the proposed MX5 method, as long as there is a fill margin of approximately 2 dB, there is no outage or blocking over the C+L-band, up to a network throughput of 110 Tbps and conventional C-band transmission with lower throughput (i.e., 40 Tbps). Finally, our extensive numerical results provide a rule of thumb for balancing blocking, outage, spectrum usage, and the number of expensive L-band transponders by selecting the appropriate modulation assignment method.

Funder

Horizon 2020 Framework Programme

H2020 Marie Skłodowska-Curie Actions

Publisher

Optica Publishing Group

Subject

Computer Networks and Communications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Resource Allocation in Filterless Elastic Optical Networks over C+L Band: QoT-Aware Approach;2024 24th International Conference on Transparent Optical Networks (ICTON);2024-07-14

2. Maximizing Cost and Energy Savings in Multi-Band EONs through QoT-Driven Service Deployment;2024 IEEE International Mediterranean Conference on Communications and Networking (MeditCom);2024-07-08

3. Fragmentation and ISRS-Aware Survivable Routing, Band, Modulation, and Spectrum Allocation Algorithm in Multi-Band Elastic Optical Networks;Applied Sciences;2024-05-31

4. Cost-Optimized Quantum Communication Networks: The Crucial Role of Trusted Node Placement in Multi-Band and Multi-Fiber Realms;2024 12th Iran Workshop on Communication and Information Theory (IWCIT);2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3