Affiliation:
1. V. E. Zuev Institute of Atmospheric Optics
2. Tomsk Polytechnic University
Abstract
Optical energy flow inside a dielectric microsphere is usually co-directed with the optical wave vector. At the same time, if the optical field in a microsphere is in resonance with one of the high-quality spatial eigenmodes (whispering-gallery modes— WGMs), a region of reverse energy flow emerges in the shadow hemisphere. This area is of considerable practical interest due to increased optical trapping potential. In this Letter, we consider a perforated microsphere with an air-filled pinhole fabricated along the particle diameter and numerically analyze the peculiarities of WGM excitation in a nanostructured microsphere. A pinhole isolates the energy backflow region of a resonant mode and changes a perforated microsphere into an efficient optical tweezer. For the first time, to the best of our knowledge, a multiple enhancement of the energy backflow intensity in the pinhole at a WGM resonance is revealed and we discuss the ways for its manipulation.
Funder
Ministry of Science and Higher Education of the Russian Federation
Tomsk Polytechnic University
Subject
Atomic and Molecular Physics, and Optics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献