Combined LIBS and Raman spectroscopy: an approach for salinity detection in the field of seawater investigation

Author:

Fan Yansheng1,Xue Yuanyuan1,Wang Yiping1,Liu Runze1,Zhong Shilei123

Affiliation:

1. Qingdao University

2. National Demonstration Center for Experiment Applied Physics Education

3. University-Industry Joint Center for Ocean Observation and Broadband Communication

Abstract

As salinity is an important indicator in marine geology, ecology, breeding, and other fields, accurate, rapid, and continuous measurement of salinity is of great significance in marine investigations. At present, the seawater salinity detection methods used in practice are mainly based on the principle that the conductivity and refractive index parameters of the water change with the concentration of elements, which are composed of salinity change. However, these methods quantitatively analyze salinity values by measuring other parameters (electrical or optical parameters) that may change depending on the salinity of the water, rather than the mass fraction of the components that make up the salinity. Moreover, when the salinity value of seawater water changes substantially or the proportion of various common components composing salinity changes significantly, the detection accuracy of the above methods is difficult to guarantee. Therefore, a spectral approach, LIBS, and the Raman spectroscopy combination method for salinity analyzation, LRSS, were proposed to provide a new option. The main idea of this approach is to use the two spectral detection methods, LIBS and Raman, to determine the mole values of cations and non-monatomic anions in per unit quality (1 kg) of water, respectively. Then the mole value of the chloride ion, which is the main monatomic anion in seawater, can be determined according to the electrically neutral principle. Based on all the obtained molar values and the molar mass of each ion, the salinity of the water sample can be determined. To demonstrate the performance of this new method, we compared it with LIBS under laboratory conditions and found that, when non-monatomic anions are present in the water, the accuracy of LRSS is significantly improved compared to using the LIBS method alone. Moreover, we also compared the LRSS with the other two traditional methods through the 11 water samples configured and found that the absolute value relative error of the LRSS is only 2.63% when the salinity and components concentration change is in the possible range, which is better than the conductivity method 0.53 times and better than the refractive index method 1.52 times.

Funder

Natural Science Foundation of Shandong Province

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3